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What Is a Large Load?

Categories with non-comprehensive examples

* Common definitions seem to cluster around 50-100+MW, but many types
* A lot of focus specifically on data centers (including in these slides)
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Uncertainty in near-term large load-driven growth
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Uncertainty in
just next few
years is 10+%
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Even greater
beyond 2030
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Relevant grid decision timescales

span 15 orders of magnitude

AC Cycle




Relevant grid decision timescales

span 15 orders of magnitude
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Relevant grid decision timescales

span 15 orders of magnitude
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Relevant grid decision timescales
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Relevant grid decision timescales
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How can data centers operate?

e Data centers are not uniform. What
characterizes their differences in
electric load?

* Where are the opportunities for
impact mitigation?

* Operational data and grid modeling
required to understand grid impacts
and opportunities.

e Credit: https://www.deltaww.com/en-us/news/9771
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Inform Best-practice Planning through Large Load Siting and Grid Impacts Analysis
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Toward a Geospatial
Siting Tool

Planning for when and where large loads
interconnect to the bulk power system
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A Modeling Framework
for Data Center Siting

S ITE FEASIBILITY SITE FAVORABILITY DEPLOYMENT INTEGRATION
- Determine the buildable plots for Characterize key Select sites that could be Quantify power system
data centers based on siting exclusions attributes of buildable developed under input opportunities and
plots that capture assumptions and effects
- Account for land use intensity to developer scenarios
determine developable capacity considerations
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Siting impact mitigation options

Need to understand what it can do before you know where
to put it.
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Toward a Framework for Efficient Large
Load Grid Planning

Where we are going with forward-looking planned work



Long-term Vision Enables Site-

specific Analysis to Aid Policymakers
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Question Answered: Considering

siting constraints, what are best
near-term options?
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